T标准分数为μ时,求概率P的表。
(N(0, 1) 标准正态分布:平均=0, 标准差=1的正态分布)

z+0.00+0.01+0.02+0.03+0.04+0.05+0.06+0.07+0.08+0.09
0.00.50000.50400.50800.51200.51600.51990.52390.52790.53190.5359
0.10.53980.54380.54780.55170.55570.55960.56360.56750.57140.5753
0.20.57930.58320.58710.59100.59480.59870.60260.60640.61030.6141
0.30.61790.62170.62550.62930.63310.63680.64060.64430.64800.6517
0.40.65540.65910.66280.66640.67000.67360.67720.68080.68440.6879
0.50.69150.69500.69850.70190.70540.70880.71230.71570.71900.7224
0.60.72570.72910.73240.73570.73890.74220.74540.74860.75170.7549
0.70.75800.76110.76420.76730.77040.77340.77640.77940.78230.7852
0.80.78810.79100.79390.79670.79950.80230.80510.80780.81060.8133
0.90.81590.81860.82120.82380.82640.82890.83150.83400.83650.8389
1.00.84130.84380.84610.84850.85080.85310.85540.85770.85990.8621
1.10.86430.86650.86860.87080.87290.87490.87700.87900.88100.8830
1.20.88490.88690.88880.89070.89250.89440.89620.89800.89970.9015
1.30.90320.90490.90660.90820.90990.91150.91310.91470.91620.9177
1.40.91920.92070.92220.92360.92510.92650.92790.92920.93060.9319
1.50.93320.93450.93570.93700.93820.93940.94060.94180.94290.9441
1.60.94520.94630.94740.94840.94950.95050.95150.95250.95350.9545
1.70.95540.95640.95730.95820.95910.95990.96080.96160.96250.9633
1.80.96410.96490.96560.96640.96710.96780.96860.96930.96990.9706
1.90.97130.97190.97260.97320.97380.97440.97500.97560.97610.9767
2.00.97720.97780.97830.97880.97930.97980.98030.98080.98120.9817
2.10.98210.98260.98300.98340.98380.98420.98460.98500.98540.9857
2.20.98610.98640.98680.98710.98750.98780.98810.98840.98870.9890
2.30.98930.98960.98980.99010.99040.99060.99090.99110.99130.9916

请注意,表中的条目表示标准正态变量假定0到z之间的值的概率。通过对称获得z的负值的概率。

68-95-99.7Rule

最后修改:2022 年 04 月 23 日
如果觉得我的文章对你有用,请随意赞赏